POTTING MEDIA REPORT

ADVANCED NUTRIENTS

Imperial Analytics 1703 Gluntoll Lane Suite B Arcata, CA 95521 707-630-4173 Monday - Friday 9 a.m. - 4 p.m. lab@imperialanalytics

Analysis Type	Result	Optimal Range
рН	6.3	6 - 7
Electrical Conductivity * EC (dS/m)	1.97	2 - 4
Bulk Density (g/cm ³)	0.30	0.25-0.75
Soluble Plant Available Macronutrie	ents	
Analyte Type in ppm	Result	Optimal Range (ppm)
Calcium (Ca)	118	80 - 400
Magnesium (Mg)	44	30-70
Potassium (K)	223	60-200
Sodium (Na)	147	0 - 80
Nitrate (NO 3 ⁻ -N)	60	70 - 200
Phosphate (PO ₄ ³⁻ -P)	12	15 - 25
Micronutrients		
Analyte Type in ppm	Result	Optimal Range (ppm)
Zinc (Zn)	4	5 - 30
Manganese (Mn)	2	5 - 30
Copper (Cu)	0.2	0.5 - 1.5
Iron (Fe)	45	15 - 40
Boron (B)	0.4	0.7 - 2.5
Chloride (Cl ⁻)	152	<45
Total Plant Available Macronutrier	nts	
Analyte Type in ppm		Optimal Range
Analyte Type III ppili	Result	(nnm)
Calcium (Ca)	1500	(ppm) 2000-4000
· · · · · · · · · · · · · · · · · · ·		
Calcium (Ca)	1500	2000-4000
Calcium (Ca) Magnesium (Mg)	1500 400	2000-4000
Calcium (Ca) Magnesium (Mg) Potassium (K)	1500 400 820 600	2000-4000 100-500 150-800
Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1009	1500 400 820 600 tions	2000-4000 100-500 150-800 See ESP
Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca	1500 400 820 600 tions	2000-4000 100-500 150-800 See ESP others will decrease. If
Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1001 the percentages differ greatly from the given optimal ranges see comments	1500 400 820 600 tions 6. By increasing one, for further instruction	2000-4000 100-500 150-800 See ESP
Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1001 the percentages differ greatly from the given optimal ranges see comments: Analyte Type in Percent	1500 400 820 600 tions 6. By increasing one, or further instruction Result	2000-4000 100-500 150-800 See ESP others will decrease. If Optimal Range (%)
Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1007 the percentages differ greatly from the given optimal ranges see comments Analyte Type in Percent Calcium (Ca)	1500 400 820 600 tions 6. By increasing one, or further instruction Result 22	2000-4000 100-500 150-800 See ESP others will decrease. If Optimal Range (%) 45
Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1007 the percentages differ greatly from the given optimal ranges see comments: Analyte Type in Percent Calcium (Ca) Magnesium (Mg)	1500 400 820 600 tions 6. By increasing one, or further instruction Result 22 8	2000-4000 100-500 150-800 See ESP Optimal Range (%) 45
Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1007 the percentages differ greatly from the given optimal ranges see comments Analyte Type in Percent Calcium (Ca) Magnesium (Mg) Potassium (K)	1500 400 820 600 tions 6. By increasing one, or further instruction Result 22 8 42 28	2000-4000 100-500 150-800 See ESP Optimal Range (%) 45 9 38
Calcium (Ca) Magnesium (Mg) Potasslum (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1009 the percentages differ greatly from the given optimal ranges see comments to Analyte Type in Percent Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na)	1500 400 820 600 tions 6. By increasing one, or further instruction Result 22 8 42 28	2000-4000 100-500 150-800 See ESP Optimal Range (%) 45 9 38
Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1009 the percentages Midfer greatly from the given optimal ranges see comments in Analyte Type in Percent Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Calcium to Magnesium R	1500 400 820 600 tions 6. By increasing one, or further instruction Result 22 8 42 28	2000-4000 100-500 150-800 See ESP others will decrease. If Optimal Range (%) 45 9 38 <5
Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1007 the percentages differ greatly from the given optimal ranges see comments i Analyte Type in Percent Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Calcium to Magnesium R Analyte Type Ca:Mg	1500 400 820 600 tions 6. By increasing one, or further instruction result 22 8 42 28 atio Result 1.6	2000-4000 100-500 150-800 See ESP others will decrease. If Optimal Range (%) 45 9 38 <5 Optimal Ratio
Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1009 the percentages offder greatly from the given optimal ranges see comments! Analyte Type in Percent Calcium (Ca) Magnesium (Mg) Potassium (Mg) Potassium (Na) Calculated Calcium to Magnesium R Analyte Type	1500 400 820 600 tions 6. By increasing one, or further instruction result 22 8 42 28 atio Result 1.6	2000-4000 100-500 150-800 See ESP others will decrease. If Optimal Range (%) 45 9 38 <5 Optimal Ratio
Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1007 the percentage siffer greatly from the given optimal ranges see comments to the percentage siffer greatly from the given optimal ranges see comments to Analyte Type in Percent Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Calcium to Magnesium R Analyte Type Ca:Mg Calculated Salinity & Lime Requirem	1500 400 820 600 tions 6 by increasing one, or further instruction Result 22 8 42 28 atio Result 1.6	2000-4000 100-500 150-800 See ESP Optimal Range (%) 45 9 38 <5 Optimal Ratio >3
Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1009 the percentage offer greatly from the given optimal ranges see comments. Analyte Type in Percent Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Calcium to Magnesium R Analyte Type Ca:Mg Calculated Salinity & Lime Requirem Analysis Type SAR (sodium absorption ratio)	1500 400 820 600 tions Exprincesing one, or further instruction Result 22 8 42 28 atio Result 1.6 Result	2000-4000 100-500 150-800 See ESP Optimal Range (%) 45 9 38 <5 Optimal Ratio >3 Optimal Range <13
Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1009 the percentage offer greatly from the given optimal ranges see comments to Analyte Type in Percent Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Calcium to Magnesium R Analyte Type Ca:Mg Calculated Salinity & Lime Requirem Analysis Type	1500 400 820 600 tions 68 by increasing one, or further instruction Result 22 8 42 28 atio Result 1.6 nent Result	2000-4000 100-500 150-800 See ESP Optimal Range (%) 45 9 38 <5 Optimal Ratio >3 Optimal Range

^{*}Lime Requirement is reported as 100% CaCO₃ to a pH of 6.5 - Compare to the % CaCO₃ in your liming product to determine application rate.

customer contact:		
Name: Jane Doe		
Phone: 707-630-4173		
Email: lab@imperialanalytics.com		
Date Received: 02/04/2019		
Report date: 02/08/2019		
Report Approved by: ZM QC Approved by: LS		
Sample Info:		
Received by: IA		
Sample Name: Garden		
Lab ID: 1000 ptpa1		
Results at a Glance:		
See Page 2 for complete Interpretations & Recommendations		
The reported lime application rate is intended to raise pH to 6.5, HOWEVER a soil can only process Sib/100 sq-ft (10lb/100 cubic-ft) of liming agent per application. Applications that are larger than Sib/100Ft2 should be split with one half applied now and the half at the end of the season before planting a cover crop.		
For further details about your report give us a call to discuss a consultation. You can also check out our website at www.imperialanalytics.com for more information, helpful hints and disclaimers.		

ND - No Detection - This means there was not a detected amount of this substance in your sample.