POTTING MEDIA REPORT

F2: FULL NUTRIENTS

Imperial Analytics 1703 Giuntoli Lane Suite B Arcata, CA 95521 707-630-4173 Monday - Friday 9 a.m. - 4 p.m. Iab@imperialanalytics

Analysis Type	Result	Optimal Range	
pH	6.3	6 - 7	
Electrical Conductivity * EC (dS/m)	1.97	2 - 4	
Bulk Density (g/cm ³)	0.30	0.25-0.75	
Soluble Plant Available Macronutrients			
Analyte Type in ppm	Result	Optimal Range (ppm)	
Calcium (Ca)	118	80 - 400	
Magnesium (Mg)	44	30-70	
Potassium (K)	223	60-200	
Sodium (Na)	147	0 - 80	
Nitrate (NO ₃ ⁻ -N)	60	70 - 200	
Phosphate (PO 4 ³⁻ -P)	12	15 - 25	
Micronutrients			
Analyte Type in ppm	Result	Optimal Range (ppm)	
Zinc (Zn)	4	5 - 30	
Manganese (Mn)	2	5 - 30	
Copper (Cu)	0.2	0.5 - 1.5	
Iron (Fe)	45	15 - 40	
Boron (B)	0.4	0.7 - 2.5	
Chloride (Cl ⁻)	152	<45	
Total Plant Available Macronutrients			
Analyte Type in ppm	Result	Optimal Range (ppm)	
Calcium (Ca)		2000-4000	
• •			
Magnesium (Mg)		100-500	
Magnesium (Mg)		100-500	
Magnesium (Mg) Potassium (K)	tions	100-500 150-800	
Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will ad up to 1009	6. By increasing one, o	100-500 150-800 See ESP	
Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca	6. By increasing one, o	100-500 150-800 See ESP thers will decrease. If Optimal Range	
Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, and Potassium relate to each other. These will add up to 1000 the percentages differ greatly from the given optimal ranges see comments 1	6. By increasing one, o for further instruction.	100-500 150-800 See ESP	
Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, and Potassium reliet to seith other. These will add up to 1000 the percentages differ greatly from the given optimal ranges see comments t Analyte Type in Percent	6. By increasing one, o for further instruction. Result	100-500 150-800 See ESP thers will decrease. If Optimal Range (%)	
Magnesium (Mg) Potassium (Mg) Sodium (K) Calculated Percent Exchangeable Ca How Calcium, Magnesium, and Intrassum relate to each other. These will add up to 2000 the percentages differ greatly from the given optimal ranges see comments I Analyte Type in Percent Calcium (Ca)	6. By increasing one, o for further instruction. Result 22	100-500 150-800 See ESP thers will decrease. If Optimal Range (%) 45	
Magnesium (Mg) Potassium (Mg) Calculated Percent Exchangeable Ca Calculated Percent Exchangeable Ca How Calcium, Magnesium, and Intrassum relate to each other. These will add up to 1000 the percentages differ greatly from the given optimal ranges see comments I Calcium (Ca) Magnesium (Mg)	6. By increasing one, o for further instruction. Result 22 8	100-500 150-800 See ESP thers will decrease. If Optimal Range (%) 45 9	
Magnesium (Mg) Potassium (Mg) Calculated Percent Exchangeable Calculated Percent Exchangeable Calculated Percent Exchangeable Calculated Percent Exchangeable Calculated Percent Calculated Percent Calculated Percent Calculated Percent Calculated Calculat	S. By increasing one, o for further instruction. Result 22 8 42 28	100-500 150-800 See ESP thers will decrease. If Optimal Range (%) 45 9 38	
Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcun, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1009 the percentages affer greatly from the given optimal ranges see comments I Calculated Calculate	S. By increasing one, o for further instruction. Result 22 8 42 28	100-500 150-800 See ESP thers will decrease. If Optimal Range (%) 45 9 38	
Magnesium (Mg) Potassium (K) Sodium (K) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1009 the percentages differ greatly from the given optimal ranges see comments in Calcium (Ca) Calcium (Ca) Potassium (Mg) Potassium (K) Sodium (Na) Calculated Calcium to Magnesium R	4. By Increasing one, o or further instruction. Result 22 8 42 28 atio	100-500 150-800 See ESP Uthers will decrease. If Optimal Range (%) 45 9 38 <5	
Magnesium (Mg) Potassium (Mg) Sodium (K) Calculated Percent Exchangeable Ca How Caldium, Magnesium, Sodium (Na) Calculated Percent Exchangeable Ca Calculated Percent Calculated	4. By Increasing one, o or further instruction. Result 22 8 42 28 atio Result 1.6	100-500 150-800 See ESP Uthers will decrease. If 0ptimal Range (%) 38 <5 0ptimal Ratio	
Magnesium (Mg) Potassium (Kg) Calculated Percent Exchangeable Ca Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassium relate to each other. These will add up to 1009 the percentages differ greatly from the given optimal ranges are comments in Calcular (Ca) Calcium (Ca) Potassium (Mg) Calculated Calcium to Magnesium R Analyte Type Ca:Mg	4. By Increasing one, o or further instruction. Result 22 8 42 28 atio Result 1.6	100-500 150-800 See ESP Uthers will decrease. If 0ptimal Range (%) 45 9 38 <5 0ptimal Ratio	
Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, Ind Potassiur relate to rach other. These will add up to 2000 the percentage offer greatly from the given optimal ranges are comments? Analyte Type In Percent Calcium (Ca) Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Calcium to Magnesium R Analyte Type Ca:Mg Calculated Salinity & Lime Requirem	4. By Increasing one, o or further instruction. Result 22 8 42 28 atio Result 1.6 eent	100-500 150-800 See ESP Verse will decrease. If Optimal Range (%) 38 38 <5 Optimal Ratio >3	
Magnesium (Mg) Potassium (K) Sodium (Na) Calculated Percent Exchangeable Ca How Calcium, Magnesium, and Potassium relate to rach other. These will add up to calculated For Calculated Percent Calcium (Ca) Calculated Calculated Calculated Calculated Calculated Calculated Calculated Salinity & Lime Requirem Analysis Type	4. By Increasing one, o or further instruction. Result 22 8 42 28 atio Result 1.6 eent	100-500 150-800 See ESP Hers will decrease. If Optimal Range (%) 38 38 38 38 38 38 38 00 00 10 38 38 38 38 38 38 38 38 38 38	
Magnesium (Mg) Potassium (K) Sodium (Ka) Calculated Percent Exchangeable Ca How Calcium, Magnesium, Sodium, and Potassiun relate to each other. These will add up to 100 the percentages differ greatly from the given optimal ranges see comments Calcium (Ca) Calcium (Ca) Calculated Salinity & Lime Requirem Calculated Salinity & Lime Requirem Analysis Type SAR (sodium absorption ratio)	4. By Increasing one, o or further instruction. Result 22 8 42 28 atio Result 1.6 eent	100-500 150-800 See ESP brs wil decrease. If Optimal Range (%) 38 	

NUTRIENTS		
Customer Contact:		
Name: Jane Doe		
Phone: 707-630-4173		
Email: lab@imperialanalytics.com		
Date Received: 02/04/2019		
Report date: 02/08/2019 Report Approved by: ZM QC Approved by: LS		
Sample Info:		
Received by: IA		
Sample Name: Garden Lab ID: 1000 pf2		
Results at a Glance:		
See Page 2 for complete Interpretations & Recommendations		
Acceptable EC		
Low End of Optimal Calcium		
High Potassium		
Moderately High Sodium		
Low Nitrate		
Low Phosphate		
Very Low Zn		
Very Low Manganese		
Low Copper		
High Iron		
Very Low Boron		
Very High Chloride		
Low Ca:Mg Ratio		
The reported lime application rate is intended to raise pH to 6.5, HOWEVER a soil can only process Sib/100 sq-ft (10lb/100 cubic-ft) o liming agent per application. Applications that are larger than Sib/100Ft2 should be split with one half applied now and the half at th end of the season before planting a cover crop.		
For further details about your report give us a call to discuss a consultation. You can also check out our website at www.imperialanalytics.com for more information, helpful hints and disclaimers.		

*Line Requirement is reported as 100% CaCO₃ to a pH of 6.5 - Compare to the % CaCO₃ in your liming product to determine application rate.

ND - No Detection - This means there was not a detected amount of this substance in your sample.

Interpretations & Recommendations:		
Acceptable EC	Will increase when you amend. A low EC is indicative of nutrient deficient soil.	
Low End of Optimal Calcium	While visual deficiency symptoms are not likely to be present, an application of a calcium amendment will likely be beneficial to plant growth. If soil pH is low, lime or oyster shell can be used. If soil pH is within range, use gypsum or other amendment that will not increase soil pH.	
High Potassium	Soil with higher than optimal potassium can interfere with plant uptake of calcium and magnesium. High potassium levels also increase the soil EC, especially when the source is potassium chloride. Recommend to reduce potassium inputs until soil has decreased to optimal range.	
Moderately High Sodium	Salt impacts are probably minimal at this level, but some varieties are more sensitive to sodium than others. Regular thorough watering should decrease this level - no need to flush unless plant issues are evident. Be aware that marine-based inputs and dairy manure compost likely contain sodium. Avoid inorganic fertilizers than include sodium. Consider flushing soil between crop cycles. A weak nutrient solution containing potassium, calcium, and magnesium is more effective at leaching and replacing sodium than plain water.	
Low Nitrate	Nitrate is lower than ideal. This can be easily mitigated with light feedings of fish hyrolysate or a similarly balanced product. Nitrate levels should be increased before the next planting using compost, chicken manure, fish, N-heavy guano, alfalfa meal or other nitrogen rich amendment. Depending on where your crop is in its growth cycle, nitrate may become too low, as it is needed at low levels into flower. You may need to boost N in late flower, but this can be easily mitigated with light feedings of fish hyrolysate or similarly balanced product.	
Low Phosphate	If your crop is near or in the flowering cycle, you need to add a soluble form of phosphorus (a high-P guano, marine product or liquid bone meal). If you have a full season crop or are still in veg, amend the soil with an amendment contain phosphorus (guano, bone meal, or other P-heavy source). Low levels of P will decrease plant root growth and subsequent health and will also decrease yields. Healthy soil biology will also assist in increasing phosphorus availibility.	
Very Low Zn	Soil with less than 5 ppm zinc should have a zinc source applied to the soil before the growing season or are likely to exhibit zinc deficiencies. Plants with visual deficiency symptoms should have a foliar application of chelated zinc applied and also a zinc source (glacial rock dust or basalt) should be applied to the soil.	
Very Low Manganese	Visual deficiency symptoms are very likely at this range. Lack of manganese in the soil leads to reduced root and shoot growth. This can lead to nitrogen and phosphorus accumulations in plant tissue which may increase likelihood of root and leaf disease. Many common crops are sensitive to manganese deficiencies. Use a trace mineral additive (rock dust) if levels are low prior to planting or apply a readily available micronutrient product during production to raise plant available micronutrient level to correct visible deficiencies.	
Low Copper	Copper can be supplied by most composts, manures, and trace mineral additives (glacial rock dust). If copper deficiency symptoms are present apply a micronutrient blend foliarly.	
High Iron	This is common in native mineral soils and should not be a problem unless the pH decreases. Iron uptake increases as pH lowers, so iron toxicities can be an issue in systems with pH below 6.0.	
Very Low Boron	The boron level is very low in this soil. While needed in minimal amounts, boron is essential for proper growth. Soils with this level of boron are likely to experience visual symptoms is boron is not applied. Most trace mineral additives (glacial rock dust), liquid micronutrient products, and composts contain boron. If deficiency symptoms are present, apply boron foliarly.	
Very High Chloride	Very high levels of chloride can lead to toxicity. The source of high chloride can be your water source, manure and manure composts, and marine based amendments. If you are not adding marine product or manures, check you fertilizer labels for chloride compounds and omit them. Inorganic liquid fertilizers often contain chloride compounds (i.e. potassium chloride). Otherwise, test your water source. Flushing can help remove chloride, but test water to make sure you are not adding more chloride from the water source.	
Low Ca:Mg Ratio	There is not enough calcium in the soil when compared to magnesium levels. If soil pH is low, calcium concentrations can be increased using lime or oyster shell, but avoid using dolomite (contains magnesium). If pH is acceptable, gypsum can be added to supply calcium without changing pH.	